Editing RootsOfPolynomials
You are currently browsing as guest..
To change this, fill in the following fields:
Username
Password
Click here to reset your password
Who can read this page?
The World
Members
Council
Admin
You have been granted an edit lock on this page
until Tue Jan 21 01:28:37 2025.
Press
to finish editing.
Who can edit this page?
World editing disabled
Members
Council
Admin
A polynomial EQN:p(x) of degree n has n roots in the complex numbers. (see fundamental theorem of algebra). If one of these roots is EQN:{\alpha} , then EQN:p({\alpha})=0 Furthermore, if EQN:p(x)=ax^n+bx^{n-1}+cx^{n-2}+...+px+q=0 has roots EQN:{\alpha}, EQN:{\beta}, EQN:{\gamma}, EQN:{\delta}, EQN:{\epsilon},...., EQN:{\omega} then * EQN:\sum{\alpha}=-\frac{b}{a} * EQN:\sum{\alpha}{\beta}=\frac{c}{a} * EQN:\sum{\alpha}{\beta}{\gamma}=-\frac{d}{a} * EQN:\sum{\alpha}{\beta}{\gamma}{\delta}=\frac{e}{a} ** etc... ** ** * EQN:{\alpha}{\beta}{\gamma}{\delta}{\epsilon}...{\omega}=\pm\frac{q}{a} *** If n is even then EQN:{\alpha}{\beta}{\gamma}{\delta}{\epsilon}...{\omega}=\frac{q}{a} *** If n is odd then EQN:{\alpha}{\beta}{\gamma}{\delta}{\epsilon}...{\omega}=-\frac{q}{a} ---- Moreover, if one of the roots of EQN:p(x)=0 is EQN:z , where EQN:z is complex (i.e. EQN:z=x+iy and EQN:y is non-zero) and all the coefficients EQN:a,b,c...q are real then another root is the complex conjugate of EQN:z