Edit made on February 11, 2013 by ColinWright at 22:00:59
Deleted text in red
/
Inserted text in green
WW WM
HEADERS_END
What is See the smallest group size that would give a better that even chance of two people sharing the same birthday?
For a group size of n, the probability that all people have a different Birthday = EQN:\frac{364}{365}\times\frac{363}{365}\times\frac{362}{365}...\frac{366-n}{365} = p
The probability that at least one pair share a birthday = 1 - p
| Number _ of People | Chance of _ no pairs | Chance of _ at least _ one pair |
| 1 | 1 | 0 |
| 2 | 0.997 | 0.003 |
| 3 | 0.992 | 0.008 |
| 4 | 0.984 | 0.016 |
| . | Problem page ... | ... |
| 22 | 0.524 | 0.476 |
| 23 | 0.493 | 0.507 |
If there are 23 or more (randomly chosen) people in a group then there is a more than even chance that two will share a birthday.