## Most recent change of FermatsLastTheorem

Edit made on February 15, 2009 by GarethMcCaughan at 00:35:37

Deleted text in red / Inserted text in green

WW
It's been known since before Pythagoras that if the lengths of the sides of a right-angled triangle are a, b and c,
with c the longest, then a, b and c satisfy the equation EQN:a^2+b^2=c^2.

[[[>50 This is a simple example _ of a Diophantine equation. ]]]
That equation has many solutions in which a, b and c which are integers. For example:
* a=5, b=12 and c=13
* a=7, b=24 and c=25
* a=8, b=15 and c=17

Fermat made the hypothesis that EQN:a^n+b^n=c^n has no integer solutions when n > 2.
In 1637 he wrote, in his copy of Claude-Gaspar Bachet's translation of the famous Arithmetica of Diophantus,
"I have a truly marvellous proof of this proposition which this margin is too narrow to contain."
(Original Latin: !/ "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet." !) !/ )

He omitted to write it down anywhere else.

For over 350 years many Mathematicians, mathematicians, despite much effort, failed to produce a correct proof until the
British Mathematician, mathematician Andrew Wiles published a proof in 1995. He was later knighted for his effort.

It is now generally believed that Fermat Fermat's proof had a proof, but flaw, which he discovered a flaw. later. There is a flawed proof in
which the flaw is to use something which at the time was generally thought to be true, but was later
shown to be false. This is, of course, sheer speculation, but it is mildly satisfying.