A recurring theme in mathematics is that sometimes different things have something in common. Finding that something and then studying it in isolation, in the abstract, can then teach us something about everything.

If you see what I mean.

A case in point is an area of mathematics called Group Theory. There are many cases where we have a collection of things, along with some way of combining them in specific way are classified as groups. Examples are numbers (which we can add or subtract) and rotations (which we can combine by doing one after the other).

Galois did a lot with group theory, to the point where there's a sub-topic call Galois Theory.

Last change to this page
Full Page history
Links to this page
Edit this page
  (with sufficient authority)
Change password
Recent changes
All pages