OPEN CHALLENGE '22

Girl with a Pearl Earring

Let the middle pearl be worth x pounds.
Then the pearls to the left and right of this each form an A.P. with sum $=2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{S}_{\mathrm{L}}=\{2(x-100)+(16-1)(-100)\}=16 x-13600$
$S_{R}=\{2(x-150)+(16-1)(-150)\}=16 x-20400$
As the whole necklace is worth $£ 65000$
$16 x-13600+x+16 x-20400=65000$
$\therefore 33 x=99000$
$\therefore x=£ 3000$
Thus the value of the large pearl is $£ 3000$.

The Starry Night

There are several ways of placing the five planets but it was stated that each planet must obscure five other stars in place of those at present covered.
Here is one such solution.

Colour Study: Squares with Concentric Circles

This was based on prime factors.
1 across is abcd $=11111 \times x($ where $x \neq 0)$
The only possible solution is $2 \times 3 \times 41 \times 271=66666$
Thus the two digits must be 0 and 6 .
1 down is $666666=\mathrm{ab}^{2} \mathrm{ijkm}=2 \times 3^{2} \times 7 \times 11 \times 13 \times 37$
Thus $\mathbf{a}=\mathbf{2}$ and $\mathbf{b}=\mathbf{3}$ and $\mathbf{c} \& \mathbf{d}=41 \& 271$
1 down divided by 10 across gives j
Anything of the pattern $x x x x x x x=11 \times x 0 x 0 x \rightarrow \mathbf{j}=11$
2 down and 4 down must contain a factor of 5 to give a 0 on the end.
4 down is $a^{2} b c d e=a b c d \times a e=66666 \times 2 e \rightarrow e=5$

9 across is now $2^{2} \times 3 \times 5 \times 11 \times I=6$?? 6 ?. If $\mathrm{I}=101$ this gives 66660
Now 6 across is a ${ }^{2}$ bef $=66060 \rightarrow \mathbf{f}=\mathbf{3 6 7}$
Now 2 down a^{2} beikj ${ }^{2}=4 \times 3 \times 5 \times 91 \times 121=660660 \rightarrow i \& k=91=7$ \& 13
10 across $\mathrm{ab}^{2} \mathrm{ikm}=2 \times 9 \times 91 \times \mathrm{m}=60606 \rightarrow \mathbf{m}=\mathbf{3 7}$
3 down $\mathrm{ab}^{2} \mathrm{mnp}=2 \times 9 \times 37 \times \mathrm{np}=600066 \rightarrow \mathrm{np}=901 \rightarrow \mathrm{n}$ \& $\mathrm{p}=17$ \& 53
7 across ab 2 gh $=2 \times 9 \times$ gh $=60066 \rightarrow \mathbf{g h}=\mathbf{3 3 3 7} \rightarrow \mathbf{g} \& \mathbf{h}=47$ \& 71
Thus $a=2, b=3, c \& d=41 \& 271, e=5, f=367, g$ \& $h=47 \& 71, i \& k=7 \& 13, j=11, l=101$, $\mathrm{m}=37 \mathrm{n} \& \mathrm{p}=17$ \& 53.

6	6	6	6	6
6	6	0	6	0
6	0	0	6	6
6	6	0	6	6
6	6	6	6	0
6	0	6	0	6

The Harvesters

The area of the four triangles marked A, B, C and D can be shown to be equal to each other.
Triangle $\mathrm{B}=\frac{1}{2} \sqrt{18} \sqrt{20} \sin x$ Triangle $\mathrm{D}=\frac{1}{2} \sqrt{18} \sqrt{20} \sin (180-x)$
These two equations are equal as $\sin x=\sin (180-x)$.
This process can be repeated for all the triangles.
Using Triangle B

$$
\cos x=\frac{18+20-26}{2 \sqrt{18} \sqrt{20}}=\frac{1}{\sqrt{10}}
$$

As $\cos ^{2} x+\sin ^{2} x=1 \quad \sin ^{2} x=1-\frac{1}{10}=\frac{9}{10} \quad$ Thus $\sin x=\frac{3}{\sqrt{10}}$
Thus area of Triangle $B=\frac{1}{2} \sqrt{18} \sqrt{20} \times \frac{3}{\sqrt{10}}=9$
Total Area $=4 \times 9+26+20+18=100$ acres .
Thus he received $100 \times 3 \times 160=\mathbf{£ 4 8} \mathbf{0 0 0}$

Mona Lisa

Area of painting $=a \times b \quad$ Total area with frame $=2 \times a \times b$ Let new width be a α and new height be $b \beta$. Thus $\alpha \beta=2$.
Any two fractions whose product is 2 will suffice e.g. $\frac{4}{3} \times \frac{3}{2}$ etc.
These measurements are easily obtained.
If the width is to be the same, x say, then

$$
\begin{aligned}
2 a b & =(a+2 x)(b+2 x) \\
& =a b+2 a x+2 b x+4 x^{2} \\
a b & =2 a x+2 b x+4 x^{2}
\end{aligned}
$$

$$
4 x^{2}+2(a+b) x-a b=0
$$

$$
x=\frac{-2(a+b) \pm \sqrt{4(a+b)^{2}+4 \times 4 a b}}{8}
$$

$$
\therefore x=\frac{-(a+b)+\sqrt{a^{2}+6 a b+b^{2}}}{4}
$$

Using the top right angled triangle

$$
\begin{array}{ll}
p=\sqrt{(a+b)^{2}-(a-b)^{2}} & q=\sqrt{(a+b)^{2}+4 a b} \\
p=\sqrt{4 a b} & q=\sqrt{a^{2}+6 a b+b^{2}} \\
p=2 \sqrt{a b} &
\end{array}
$$

Using the bottom right angled triangle

Thus x can be found by taking the length of $a+b$ from q and then dividing the string in half and then half again.

A Sunday Afternoon on the Island of La Grande Jatte

The total distance travelled was $6 \times 37.73=\mathbf{2 2 6 . 3 8}$ miles.
There were at least 20 riders in the race.

Competitors	Start	Finish	Time Taken	Av. Speed	Position
1 and 2	12.00.00	14.00.00	2 hours	113.19 mph	
3 and 4	12.00.10				
5 and 6	12.00.20	13.59.37	1 hour 59 min 17s	113.87 mph	
7 and 8	12.20.30				
9 and 10	12.00.40				
11 and 12	12.00.50				
13 and 14	12.01.00				
15 and 16	12.01.10				
17 and 18	12.01.20				
19 and 20	12.01.30	13.59.37	1 hour 58 min 7 s	115 mph	FIRST

The greatest average speed was $\mathbf{1 1 6 . 1 9} \mathbf{~ m p h}$ achieved by number 1 on his last lap.
Number 1's first five laps took $\mathbf{1 h} \mathbf{4 0 m i n}$ 31s with an average speed of $\mathbf{1 1 2 . 6 m p h}$.

